3 步驟搞定 Fine-tuning,讓 AI 學會讀心術不再是空談!

Fine-tuning -1

3 步驟搞定 Fine-tuning,讓 AI 學會讀心術不再是空談!

 

 

 

微調的魔力:讓你的模型讀懂你的心

在這個數據驅動的時代,機器學習模型的精準度是勝敗的關鍵。你是否曾經希望你的 ChatGPT 模型能夠更貼近實際需求,更瞭解你的用戶?Fine-tuning(微調)就是你的解答!

Fine-tuning -1

 

 

Fine-tuning:微調專屬於你的 AI 助理

試著想像,當一個 AI 對所有人都說出相同的話時,它的價值就會大打折扣。然而,透過 fine-tuning 技術,您可以不必從零開始,節省了訓練新模型的龐大成本。您只需要準備好成對的資料,就可以對著已經訓練好的模型進行細部修正,讓模型產出更符合你期待的結果。

讓你的 AI 能夠針對特定業務場景提供客製化回答,使得顧客滿意度和效率大幅提升。

 

A series of six images arranged in a 2x3 grid that captures the essence of fine-tuning an AI assistant to cater to individual preferences and scenarios. Image one: A researcher tweaking the settings on a holographic interface of an AI model. Image two: A pair of hands sorting through a stack of data sheets, symbolizing the preparation of training data. Image three: A digital avatar speaking different phrases to different people, illustrating personalized responses. Image four: A progress bar on a screen reaching 100% with the text 'Fine-Tuning Complete'. Image five: A satisfied customer giving a thumbs-up to a computer screen that displays a chat interface with an AI. Image six: A meeting room where a presentation shows a graph of customer satisfaction ratings skyrocketing post AI customization.

 

 

省時、省錢、更高效

微調還有一個不可忽視的好處:它可以節省我們的時間和金錢。通過提供精確的訓練資料,微調可以使 AI 在不需要長串指令的情況下給出正確的回答,這樣不僅可以減少 tokens 的使用,降低成本,同時也能加快 AI 的反應速度​​。

A visually striking poster emphasizing efficiency in a fast-paced environment. The headline reads, 'Save Time, Save Money, More Efficient.' Below, an illustration shows a stylized clock merging with a coin, symbolizing time and money savings. Around this central image, digital streams and gears are working seamlessly together, representing precision and speed in AI training. The background is dynamic, conveying a sense of rapid movement and technology at work, with digital elements and sleek lines suggesting a high-tech, streamlined process. The overall color scheme is a mix of cool blues and greens, associated with professionalism and efficiency, with highlights of bright accents to draw attention to the benefits of fine-tuning AI. The text emphasizes the advantage of using precise training data to reduce costs and increase AI response time without lengthy instructions.

 

 

Fine-tuning 三步驟

微調的過程並不複雜,以下是一些基本的步驟:

 

1. **準備好訓練資料**:

您的訓練資料應該是 JSONL 格式,每一行都是一個輸入與期望輸出的配對。OpenAI 提供了工具幫助您將資料轉換成所需格式。一旦準備好訓練資料,使用 OpenAI 提供的 File API 來上傳並獲取檔案 ID。

 

2. **訓練微調模型**:

一旦您有了訓練資料的 ID,就可以創建微調任務並開始訓練您的模型。您可以選擇基底模型,例如 adababbagecuriedavinci,並透過 OpenAI 的 CLI 或是相關 API 進行操作

 

3. **使用微調後的模型**:

微調完成後,您將獲得一個模型名稱。您可以使用這個模型名稱作為 API 的參數,就像使用原始模型一樣。這使得模型能夠更快速、準確地產生您希望的輸出​​。

 

微調與成本:一個值得的投資?

雖然 fine-tuning 能夠提升模型的準確度和可操作性,但我們也必須考慮相關的成本。fine-tuning 不只涉及 API 的使用成本,還包含了人力資源的投入。一個成功的微調專案可能需要模型團隊、產品團隊和業務團隊緊密合作。從規劃到投入生產環境,甚至可能需要長達一個月到一個季度的時間。

The poster is designed to question the value of investment in fine-tuning AI models. The headline reads 'Fine-Tuning and Costs: A Worthy Investment?' The visual features a balance scale, on one side there's a pile of coins, representing the cost, and on the other side, there's a glowing digital brain, symbolizing the improved accuracy and operability of a fine-tuned AI. The background depicts a collaborative environment with silhouettes of people from a model team, product team, and business team working together, symbolizing the human resource investment required. A calendar with pages flipping from one month to a quarter year illustrates the time investment needed. The color scheme combines corporate blues and grays with hints of gold to reflect the investment theme. The overall design conveys a critical look at the balance between cost and the benefits of fine-tuning AI, suggesting it's a complex decision involving time, money, and teamwork.

 

 

Fine-tuning vs. Embedding

對於想要提升模型表現的人來說,fine-tuning 和 embedding (註1)是兩種可選擇的策略。這兩者可以一起使用,也可以分開使用,實際並不衝突,具體要選擇哪一個,最終還是需要根據你的業務需求和成本效益來決定。

A poster illustrating the comparison between fine-tuning and embedding strategies in AI. The headline is 'Fine-tuning vs. Embedding.' The main visual is a split design with one half showing a highly detailed, intricate gear system representing the complexity and precision of fine-tuning, and the other half displaying a network of interconnected nodes that symbolize the embedding process. Both sides are working harmoniously, but separately, to symbolize that they can be used together or independently. There are icons or figures that represent business needs and cost-effectiveness, such as a briefcase, a calculator, or graphs, subtly included in the background to emphasize the decision-making process based on business requirements and cost-benefit analysis. The color palette uses contrasting colors to distinguish between the two strategies, yet the overall design is cohesive to show that they are part of the same field. The style is sleek and modern, suggesting cutting-edge technology and strategic choices in AI development.

 

 

 

(註1)Embedding:指的是將大量的、高維度的資料(如文字、圖片或聲音)轉換成一個較低維度、密集的向量空間。例如:在自然語言處理中,文字 embedding 會將單詞或短語轉換成一組數字向量,使機器學習模型能更有效率地處理語言資料。

  • 2023 年 11 月 17 日